

Urban and periurban agriculture and flood

Some imputs from a northern and southern experience

1. May Intra urban agriculture play a role in containing flood?

New York City

Brooklyn Grange

In Cohen N, 2014. UA as Green Infrastructure: the case of NYC. In RUAF magazine, mars2014

A MF Business Model!

0.6 millions \$ for the « rain captation service » of NYC Urban Farms (open air) 4000 m² ≈ 4 millions In 2012 I

Box scheme selling

Visits events

4

Paiement for an « ES » of rain captation

« it allows not to change the size of pipes » (NYC Department of City Planning) : a tool to manage storm water ?

BUT

Intensive crop production needs irrigation (around 36t/year on 1,3 ha at total)

"We found cumulative discharge exceeded precipitation by 11 % hence the farm was a net source of water during the entire study period, in the urban hydrologic cycle"

Harada, Y., Whitlow, T. H., Todd Walter, M., Bassuk, N. L., Russell-Anelli, J. et Schindelbeck, R. R. (2018). <u>Hydrology</u> of the <u>Brooklyn Grange</u>, an <u>Urban Rooftop Farm</u>. Urban Ecosystems, 21(4), 673-689. doi: 10.1007/s11252-018-0749-7

Experimental Rooftop on AgroParisTech Paris 2012-2022

Grard BJ-P, Chenu C, Manoucherhi N, Frascaria N, Aubry C, 2018. Rooftop farming on urban waste provides many ecosystem services. Agronomy for Sust.Dev., 38-2

Retention rates from **74 to 90%** of rainfall and irrigation water

BUT

High losses of Nitrogen and Carbon in drainage water

SEMOIRS Research program (2018-2020)

In Chtioui, 2020

FEW Meter Research program (2019-2022) Caputo et al, 2022

Figure 2a/b Water used a) per country and b) per garden/farm type (in 2019 and 2020).

A need for agro(eco) urbanistic research!

2. Interests and adaptation of Urban agriculture to flood: a malagasy experience

Defrise, 2018 Andriamanga AV et al, 2024

Three rivers, an historical Rice Plain

Antananarivo

- 40% of the territory (70500 ha) under agriculture in 2022 (44% in 1999)
- ➤ 33% in the city itself; 60% in plain and valleys (16750 ha)

A threatened but dynamic Urban and Periurban agriculture

For food reasons

(Dubbeling et al, 2010)

80 to 100% of vegetables (tomatoes, lettuce, cabbages, carrots, herbs

- > 90 % of eggs, milk > 80% of chicken meat
- >25% for rice

And an increasing role

Dabat et al, 2006, Aubry et al, 2012, Defrise et al, 2020

Instead of a fast and badly controlled urbanisation

Building goes on 2003-2017: +3,2%/year

Population grows 5 to 8%/year in teh same period

2003

2017

UA: an anti-flood role?

Intra urban valleys may stock several days of tropical rain (Andriamalala 2006)

Rice plain (intra and Peri) too

BUT

Brick activity for farmers: a very efficient but not sustainable way of making money

AND

In PUDI 2006-2008 : « UA is the most efficient and the less expensive way to control flood »

Aubry C et al, 2012

2000 ha of the Rice Plain « forbidden for building « Our Buffer Zone » in 2008

After the PUDI 2006-2008 ...

Building still goes on

2003-2017: +3,2%/year

And dramatic flood too!

With *higher and later risks now* than at the beginning of the century

In 2019 a New PUDI « to manage Flood facing climatic changes »

Redefine and precise the level of flood risks inside and near the city

BUT

2017-2022 : + 5,08% /year

Some agricultural adaptations

Rice to water cress

An adaptation to quantity but chiefly (BAD) water quality

Bacteriological and fecal pollutions DCO/DBO 2,7 (>0,5 WHO)

5

In the Rice plain

Increasing Fishes/Rice systems « rizipisciculture »

Market vegetables on the edges of fishes basins

3. Using Flood to enhance agricultural production? The case of market vegetable farming in the Parisian Region

Climaleg Eau (2021-2024)

(Touili et al, 2024)

More intense Rain in Winter-spring
More drought in spring Summer fall
a trend to uncertainty to refill
Ground Water

Vegetables Autonomy 10% Now

Flood Manageme protecting Paris!

Marne Flood 2018

Increasing needs for irrigation >= 20%

Dpt des Yvelines, 2022

Agricultural Ponds

Thank you for your attention